Vector Class

From Derivative
Jump to: navigation, search

The vector class holds a single 3 component vector. A vector describes a direction in space, and it's important to use a vector or Position as appropriate for the data that is being calculated. When being multiplied by a Matrix, this class will implicitly have a 4th component (W component) of 0. A new vector can be created without any arguments, with 3 arguments for the x,y,z values, or with a single argument which is a variable that has 3 entries such as a list of length 3, or a position or vector. Examples of creating a vector:

v = tdu.Vector() # starts as (0, 0, 0)
v2 = tdu.Vector(0, 0, -1)
values = [0, 1, 0]
v3 = tdu.Vector(values)



Members

tdu.Vector.xfloat :

Gets or sets the X component of the vector.

tdu.Vector.yfloat :

Gets or sets the Y component of the vector.

tdu.Vector.zfloat :

Gets or sets the Z component of the vector.

Methods

tdu.Vector.normalize()None:

Makes the length of this vector 1.
m.normalize()

tdu.Vector.angle(vec)float:

Returns the angel (in degrees) between the current vector and specified vector (vec).
d = v.angle(v2)

tdu.Vector.lerp(vec2, t)tdu.Vector:

Returns the linear interpolation of this vector and vec2. That is vec1 * (1.0 - t) + vec2 * t, where vec1 is the current vector. The value for t is not restricted to the range [0, 1].
l = v.lerp(v2, t)

tdu.Vector.project(vec, vec)None:

Projects this vector onto the plan defined by vec1 and vec2. Both vec1 and vec2 must be normalized. The result may not be normalized.
  • vec1, vec2 - The vectors that specify the plane to project onto. Must be normalized.
v.project(v1, v2)

tdu.Vector.lengthSquared()float:

Returns the squared length of this vector.
l = v.lengthSquared()

tdu.Vector.scale(x, y, z)None:

Scales each component of the vector by the specified values.
  • x, y, z - The values to scale each component of the vector by.
v.scale(1, 2, 1)

tdu.Vector.lerp(vec2, t)tdu.Vector:

:Returns the spherical interpolation of this vector and vec2. The value for t is not restricted to the range [0, 1].
l = v.lerp(v2, t)

tdu.Vector.reflect(vec)None:

Reflects the current vector about the specified vector (vec).
v.reflect(v2)

tdu.Vector.cross(vec)tdu.Vector:

Returns the cross product of this vector and the passed vector. The operation is self cross vec.
  • vec - The other vector to use to calculate the cross product.
c = v.cross(otherV)

tdu.Vector.length()float:

Returns the length of this vector.
l = m.length()

tdu.Vector.dot(vec)float:

Returns the dot product of this vector and the passed vector.
  • vec - The other vector to use to calculate the dot product
d = v.dot(otherV)

tdu.Vector.distance(vec)float:

Returns the distance of the current vector to specified vector (vec).
l = v.distance(v2)

tdu.Vector.copy()tdu.Vector:

Returns a new vector that is a copy of the vector.
newV = v.copy()

Special Functions

tdu.Vector[i]float:

Gets or sets the component of the vector specified by i, where i can be 0, 1, or 2.
y = v[1]
v[1] = y * 2.0

tdu.Vector * floattdu.Vector:

Scales the vector by the give float scalar and returns a new vector as the result.
v = v * 2.0
v = 2.0 * v

tdu.Vector + floattdu.Vector:

Adds the given scalar to all 3 components of the vector and returns a new vector as the result.
v = v + 5.0
v = 5.0 + v

tdu.Vector - floattdu.Vector:

Subtracts the given scalar from all 3 components of the vector and returns a new vector as the result.
v = v - 1.5
v = 1.5 - v

tdu.Vector + tdu.Vectortdu.Vector:

Adds the two vectors to create a new vector.
v3 = v1 + v2

tdu.Vector - tdu.Vectortdu.Vector:

Subtracts the two vectors to create a new vector.
v3 = v1 - v2

tdu.Vector += tdu.Vectortdu.Vector:

Adds the 2nd vector to the 1st vector, the 1st vector will contain the result of the operation.
v1 += v2

tdu.Vector += floattdu.Vector:

Adds the given scalar to all 3 components of the vector, the vector will contain the result of the operation.
v1 += 0.4

tdu.Vector -= tdu.Vectortdu.Vector:

Subtracts the 2nd vector from the 1st vector, the 1st vector will contain the result of the operation.
v1 -= v2

tdu.Matrix * tdu.Vectortdu.Vector:

Multiplies the vector by the matrix and returns the a new vector as the result.
v = M * v

tdu.Vector / floattdu.Vector:

Divides each component of the vector by the scalar and returns the a new vector as the result.
v = v / 0.2

tdu.Vector *= tdu.Matrixtdu.Vector:

Multiplies the vector by the matrix, the vector will contain the result. The vector is multiplied on the right of the matrix. This is the same as doing v = M * v, although more efficient since it doesn't require assigning a new vector to v.
v *= M

tdu.Vector *= floattdu.Vector:

Scales all 3 components of the vector by the given scalar. The vector will contain the result.
v *= 1.1

tdu.Vector *= tdu.Vectortdu.Vector:

Does a component-wise scale of all 3 components of the vector by the components of the 2nd vector. The vector will contain the result.
v1 *= v2

abs(tdu.Vector)tdu.Vector:

Returns a new vector with all 3 components being the absolute value of the given vector's components.
v2 = abs(v1)

-tdu.Vectortdu.Vector:

Returns a new vector with all 3 components being negated.
v2 = -v1