GLSL TOP

From Derivative
Jump to: navigation, search


Summary

The GLSL TOP renders a GLSL shader into a TOP image. Use the Info DAT to check for compile errors in your shaders.

The GLSL TOP can act as a pixel shader, or the more general and complex Compute Shader. Caveat: Compute Shaders need GLSL 4.30 or later.

Refer to the Write a GLSL TOP article for more info on using this TOP.

The GLSL TOP has one docked compute shader as well as a normal GLSL shader. Change he Mode to Compute Shader. it will use the glsl1_compute DAT.

See the GLSL Category for more information, and Compute Shader.

PythonIcon.pngglslTOP_Class


Parameters - GLSL Page

GLSL Version glslversion - - Pick what version of GLSL to compile the shader with.

  • 1.20 glsl120 -
  • 3.30 glsl330 -
  • 4.00 glsl400 -
  • 4.10 glsl410 -
  • 4.20 glsl420 -
  • 4.30 glsl430 -
  • 4.40 glsl440 -
  • 4.50 glsl450 -

Mode mode - - Choose what type of shader you are writing, vertex/pixel shader, or a compute shader.

  • Vertex/Pixel Shader vertexpixel -
  • Compute Shader compute -

Vertex Shader vertexdat - Points to the DAT holding the Vertex Shader. Drag & Drop a DAT here, or manually enter the path to the DAT.

Pixel Shader pixeldat - Points to the DAT holding the Pixel Shader. Drag & Drop a DAT here, or manually enter the path to the DAT.

Compute Shader computedat - Points to the DAT holding the Compute Shader. Drag & Drop a DAT here, or manually enter the path to the DAT.

Load Uniform Names loaduniformnames -

Dispatch Size dispatchsize -

Output Access outputaccess - - Controls how the output textures will be accessed. If the textures will be read from (such as using previous frame's values), then the access should be changed to Read-Write instead of Write Only.

  • Write Only writeonly -
  • Read Only readonly -
  • Read-Write readwrite -

Output Type type - - Specify what type of texture to create. When creating a 3D texture the TOP will render once for every slice of the output. Refer to 3D Textures and 2D Texture Arrays for more info.

  • 2D Texture texture2d - Creates a 2D texture.
  • 2D Texture Array texture2darray - Creates a 2D Texture Array. Slices of the array can be access using a non-normalized integer index for the w coordinate.
  • 3D Texture texture3d - Creates a 3D Texture. Slices of the array can be accessed using the w coordinate in the range 0-1. Value of the texture in between slices are interpolated.

Depth depth - - Set the depth of the 3D texture from the Input or the Custom Depth parameter.

  • Input input -
  • Custom custom -

Custom Depth customdepth - Manually set the depth of the 3D texture, otherwise it will use the depth of the input.

Input Mapping inputmapping - - Determines how the node's input(s) are passed into the shader for use when creating a 3D Texture. By default all of the inputs are passed to each slice. When using the N inputs per Slice mode, the first N inputs are passed to the first slice, the next N inputs are passed the second slice, and so on. When it runs out of inputs it loops back to the first input. N is selected by the parameter N Value.

  • All Inputs to Every Slice all -
  • N Input(s) per Slice ninputs -

N Value nval - Determines how many inputs are passed to the shader per slice when using the N inputs per Slice mode for Input Mapping. If for example this is set to 2, then the first 2 inputs will be passed to the first slice, the next 2 inputs will be passed the second slice, and so on. It will loop back to the start of the inputs if it runs out before it reaches the last slice.

Input Extend Mode UV inputextenduv - - Controls what is returned from your texture sampling functions when the U and V texture coordinates (called S and T in the shader) are outside [0-1] range.

  • Hold hold -
  • Zero zero -
  • Repeat repeat -
  • Mirror mirror -

Input Extend Mode W inputextendw - - Controls what is returned from your texture sampling functions when the W texture coordinate (called W in the shader) are outside [0-1] range. Only useful for 3D Texture.

  • Hold hold -
  • Zero zero -
  • Repeat repeat -
  • Mirror mirror -

# of Color Buffers numcolorbufs - Any shader you write can output to more than one RGBA buffer at a time. Turn up this value to have more color buffers allocated for you, and refer to [Write_a_GLSL_TOP#Outputting_to_Multiple_Color_Buffers Write a GLSL TOP] for more information on using this feature.



Parameters - Vectors 1 Page

These are passed as uniforms into your shader. Depending on how the uniform is declared only some of the values of the 4 available per parameter as passes to the shader. For example, if the uniform is declared as a vec2, then only the first 2 values are passed to the shader, the other 2 are ignored.

Uniform Name uniname0 - The uniform name, as declared in the shader

Value value0- - The value(s) to give the uniform.

X value0x -


Y value0y -


Z value0z -


W value0w -

Uniform Name uniname1 -

Value value1- -

X value1x -


Y value1y -


Z value1z -


W value1w -

Uniform Name uniname2 -

Value value2- -

X value2x -


Y value2y -


Z value2z -


W value2w -

Uniform Name uniname3 -

Value value3- -

X value3x -


Y value3y -


Z value3z -


W value3w -

Uniform Name uniname4 -

Value value4- -

X value4x -


Y value4y -


Z value4z -


W value4w -

Uniform Name uniname5 -

Value value5- -

X value5x -


Y value5y -


Z value5z -


W value5w -

Uniform Name uniname6 -

Value value6- -

X value6x -


Y value6y -


Z value6z -


W value6w -

Uniform Name uniname7 -

Value value7- -

X value7x -


Y value7y -


Z value7z -


W value7w -

Uniform Name uniname8 -

Value value8- -

X value8x -


Y value8y -


Z value8z -


W value8w -

Uniform Name uniname9 -

Value value9- -

X value9x -


Y value9y -


Z value9z -


W value9w -



Parameters - Vectors 2 Page

Uniform Name uniname10 -

Value value10- -

X value10x -


Y value10y -


Z value10z -


W value10w -

Uniform Name uniname11 -

Value value11- -

X value11x -


Y value11y -


Z value11z -


W value11w -

Uniform Name uniname12 -

Value value12- -

X value12x -


Y value12y -


Z value12z -


W value12w -

Uniform Name uniname13 -

Value value13- -

X value13x -


Y value13y -


Z value13z -


W value13w -

Uniform Name uniname14 -

Value value14- -

X value14x -


Y value14y -


Z value14z -


W value14w -

Uniform Name uniname15 -

Value value15- -

X value15x -


Y value15y -


Z value15z -


W value15w -

Uniform Name uniname16 -

Value value16- -

X value16x -


Y value16y -


Z value16z -


W value16w -

Uniform Name uniname17 -

Value value17- -

X value17x -


Y value17y -


Z value17z -


W value17w -

Uniform Name uniname18 -

Value value18- -

X value18x -


Y value18y -


Z value18z -


W value18w -

Uniform Name uniname19 -

Value value19- -

X value19x -


Y value19y -


Z value19z -


W value19w -



Parameters - Vectors 3 Page

Enable These Uniforms enablevectorpage3 -

Uniform Name uniname20 -

Value value20- -

X value20x -


Y value20y -


Z value20z -


W value20w -

Uniform Name uniname21 -

Value value21- -

X value21x -


Y value21y -


Z value21z -


W value21w -

Uniform Name uniname22 -

Value value22- -

X value22x -


Y value22y -


Z value22z -


W value22w -

Uniform Name uniname23 -

Value value23- -

X value23x -


Y value23y -


Z value23z -


W value23w -

Uniform Name uniname24 -

Value value24- -

X value24x -


Y value24y -


Z value24z -


W value24w -

Uniform Name uniname25 -

Value value25- -

X value25x -


Y value25y -


Z value25z -


W value25w -

Uniform Name uniname26 -

Value value26- -

X value26x -


Y value26y -


Z value26z -


W value26w -

Uniform Name uniname27 -

Value value27- -

X value27x -


Y value27y -


Z value27z -


W value27w -

Uniform Name uniname28 -

Value value28- -

X value28x -


Y value28y -


Z value28z -


W value28w -

Uniform Name uniname29 -

Value value29- -

X value29x -


Y value29y -


Z value29z -


W value29w -



Parameters - Arrays 1 Page

Uniform Name chopuniname0 -

Type chopunitype0 - -

CHOP chop0 -

Array Type choparraytype0 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname1 -

Type chopunitype1 - -

CHOP chop1 -

Array Type choparraytype1 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname2 -

Type chopunitype2 - -

CHOP chop2 -

Array Type choparraytype2 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname3 -

Type chopunitype3 - -

CHOP chop3 -

Array Type choparraytype3 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname4 -

Type chopunitype4 - -

CHOP chop4 -

Array Type choparraytype4 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -



Parameters - Arrays 2 Page

Uniform Name chopuniname5 -

Type chopunitype5 - -

CHOP chop5 -

Array Type choparraytype5 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname6 -

Type chopunitype6 - -

CHOP chop6 -

Array Type choparraytype6 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname7 -

Type chopunitype7 - -

CHOP chop7 -

Array Type choparraytype7 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname8 -

Type chopunitype8 - -

CHOP chop8 -

Array Type choparraytype8 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -

Uniform Name chopuniname9 -

Type chopunitype9 - -

CHOP chop9 -

Array Type choparraytype9 - -

  • Uniform Array uniformarray -
  • Texture Buffer texturebuffer -



Parameters - Matrices Page

Uniform Name matuniname0 -

Matrix matvalue0 -

Uniform Name matuniname1 -

Matrix matvalue1 -

Uniform Name matuniname2 -

Matrix matvalue2 -

Uniform Name matuniname3 -

Matrix matvalue3 -

Uniform Name matuniname4 -

Matrix matvalue4 -

Uniform Name matuniname5 -

Matrix matvalue5 -

Uniform Name matuniname6 -

Matrix matvalue6 -

Uniform Name matuniname7 -

Matrix matvalue7 -

Uniform Name matuniname8 -

Matrix matvalue8 -

Uniform Name matuniname9 -

Matrix matvalue9 -



Parameters - Atomic Counters Page

Size acsize0 -

Binding acbinding0 -

Initial Value Type acinitval0 - -

  • Single Value val -
  • CHOP Values chop -

Initial Value acsingleval0 -

Initial Values CHOP acchopval0 -

Size acsize1 -

Binding acbinding1 -

Initial Value Type acinitval1 - -

  • Single Value val -
  • CHOP Values chop -

Initial Value acsingleval1 -

Initial Values CHOP acchopval1 -

Size acsize2 -

Binding acbinding2 -

Initial Value Type acinitval2 - -

  • Single Value val -
  • CHOP Values chop -

Initial Value acsingleval2 -

Initial Values CHOP acchopval2 -

Size acsize3 -

Binding acbinding3 -

Initial Value Type acinitval3 - -

  • Single Value val -
  • CHOP Values chop -

Initial Value acsingleval3 -

Initial Values CHOP acchopval3 -



Parameters - Common Page

Output Resolution outputresolution - - quickly change the resolution of the TOP's data.

  • Use Input useinput - Uses the input's resolution.
  • Eighth eighth - Multiply the input's resolution by that amount.
  • Quarter quarter - Multiply the input's resolution by that amount.
  • Half half - Multiply the input's resolution by that amount.
  • 2X 2x - Multiply the input's resolution by that amount.
  • 4X 4x - Multiply the input's resolution by that amount.
  • 8X 8x - Multiply the input's resolution by that amount.
  • Fit Resolution fit - Multiply the input's resolution by that amount.
  • Limit Resolution limit - Multiply the input's resolution by that amount.
  • Custom Resolution custom - Enables the Resolution parameter below, giving direct control over width and height.

Resolution resolution - Enabled only when the Resolution parameter is set to Custom Resolution. Some Generators like Constant and Ramp do not use inputs and only use this field to determine their size. The drop down menu on the right provides some commonly used resolutions.

Resolution Menu resmenu -

Use Global Res Multiplier resmult - Uses the Global Resolution Multiplier found in Edit>Preferences>TOPs. This multiplies all the TOPs resolutions by the set amount. This is handy when working on computers with different hardware specifications. If a project is designed on a desktop workstation with lots of graphics memory, a user on a laptop with only 64MB VRAM can set the Global Resolution Multiplier to a value of half or quarter so it runs at an acceptable speed. By checking this checkbox on, this TOP is affected by the global multiplier.

Output Aspect outputaspect - - Sets the image aspect ratio allowing any textures to be viewed in any size. Watch for unexpected results when compositing TOPs with different aspect ratios. (You can define images with non-square pixels using xres, yres, aspectx, aspecty where xres/yres != aspectx/aspecty.)

  • Use Input useinput - Uses the input's aspect ratio.
  • Resolution resolution - Uses the aspect of the image's defined resolution (ie 512x256 would be 2:1), whereby each pixel is square.
  • Custom Aspect custom - Lets you explicitly define a custom aspect ratio in the Aspect parameter below.

Aspect aspect- - Use when Output Aspect parameter is set to Custom Aspect.

Aspect1 aspect1 -


Aspect2 aspect2 -

Aspect Menu armenu -

Input Smoothness inputfiltertype - - This controls pixel filtering on the input image of the TOP.

  • Nearest Pixel nearest - Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
  • Interpolate Pixels linear - Uses linear filtering between pixels. This is how you get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
  • Mipmap Pixels mipmap - Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.

Fill Viewer fillmode - - Determine how the TOP image is displayed in the viewer. NOTE:To get an understanding of how TOPs work with images, you will want to set this to Native Resolution as you lay down TOPs when starting out. This will let you see what is actually happening without any automatic viewer resizing.

  • Use Input useinput - Uses the same Fill Viewer settings as it's input.
  • Fill fill - Stretches the image to fit the edges of the viewer.
  • Fit Horizontal width - Stretches image to fit viewer horizontally.
  • Fit Vertical height - Stretches image to fit viewer vertically.
  • Fit Best best - Stretches or squashes image so no part of image is cropped.
  • Fit Outside outside - Stretches or squashes image so image fills viewer while constraining it's proportions. This often leads to part of image getting cropped by viewer.
  • Native Resolution nativeres - Displays the native resolution of the image in the viewer.

Viewer Smoothness filtertype - - This controls pixel filtering in the viewers.

  • Nearest Pixel nearest - Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
  • Interpolate Pixels linear - Uses linear filtering between pixels. Use this to get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
  • Mipmap Pixels mipmap - Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.

Passes npasses - Duplicates the operation of the TOP the specified number of times. Making this larger than 1 is essentially the same as taking the output from each pass, and passing it into the first input of the node and repeating the process. Other inputs and parameters remain the same for each pass.

Channel Mask chanmask - Allows you to choose which channels (R, G, B, or A) the TOP will operate on. All channels are selected by default.

Pixel Format format - - Format used to store data for each channel in the image (ie. R, G, B, and A). Refer to Pixel Formats for more information.

  • Use Input useinput - Uses the input's pixel format.
  • 8-bit fixed (RGBA) rgba8fixed - Uses 8-bit integer values for each channel.
  • sRGB 8-bit fixed (RGBA) srgba8fixed - Uses 8-bit integer values for each channel and stores color in sRGB colorspace.
  • 16-bit float (RGBA) rgba16float - Uses 16-bits per color channel, 64-bits per pixel.
  • 32-bit float (RGBA) rgba32float - Uses 32-bits per color channel, 128-bits per pixels.
  • 10-bit RGB, 2-bit Alpha, fixed (RGBA) rgb10a2fixed - Uses 10-bits per color channel and 2-bits for alpha, 32-bits total per pixel.
  • 16-bit fixed (RGBA) rgba16fixed - Uses 16-bits per color channel, 64-bits total per pixel.
  • 11-bit float (RGB), Positive Values Only rgba11float - A RGB floating point format that has 11 bits for the Red and Green channels, and 10-bits for the Blue Channel, 32-bits total per pixel (therefore the same memory usage as 8-bit RGBA). The Alpha channel in this format will always be 1. Values can go above one, but can't be negative. ie. the range is [0, infinite).
  • 16-bit float (RGB) rgb16float -
  • 32-bit float (RGB) rgb32float -
  • 8-bit fixed (Mono) mono8fixed - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 8-bits per pixel.
  • 16-bit fixed (Mono) mono16fixed - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
  • 16-bit float (Mono) mono16float - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
  • 32-bit float (Mono) mono32float - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 32-bits per pixel.
  • 8-bit fixed (RG) rg8fixed - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 8-bits per channel, 16-bits total per pixel.
  • 16-bit fixed (RG) rg16fixed - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
  • 16-bit float (RG) rg16float - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
  • 32-bit float (RG) rg32float - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 32-bits per channel, 64-bits total per pixel.
  • 8-bit fixed (A) a8fixed - An Alpha only format that has 8-bits per channel, 8-bits per pixel.
  • 16-bit fixed (A) a16fixed - An Alpha only format that has 16-bits per channel, 16-bits per pixel.
  • 16-bit float (A) a16float - An Alpha only format that has 16-bits per channel, 16-bits per pixel.
  • 32-bit float (A) a32float - An Alpha only format that has 32-bits per channel, 32-bits per pixel.
  • 8-bit fixed (Mono+Alpha) monoalpha8fixed - A 2 channel format, one value for RGB and one value for Alpha. 8-bits per channel, 16-bits per pixel.
  • 16-bit fixed (Mono+Alpha) monoalpha16fixed - A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
  • 16-bit float (Mono+Alpha) monoalpha16float - A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
  • 32-bit float (Mono+Alpha) monoalpha32float - A 2 channel format, one value for RGB and one value for Alpha. 32-bits per channel, 64-bits per pixel.



TOPs
Add • Analyze • Anti Alias • Blob Track • Blur • Cache Select • Cache • Channel Mix • CHOP to • Chroma Key • Circle • Composite • Constant • Convolve • Corner Pin • CPlusPlus • Crop • Cross • Cube Map • Depth • Difference • DirectX In • DirectX Out • Displace • Edge • Emboss • Feedback • Fit • Flip • GLSL Multi • GLSL • HSV Adjust • HSV to RGB • In • Inside • Introduction To TOPs id• Kinect • Layout • Leap Motion • Level • Lookup • Luma Blur • Luma Level • Math • Matte • Monochrome • Movie File In • Movie File Out • Multiply • NDI In • NDI Out • Noise • Normal Map • Null • Oculus Rift • OP Viewer • OpenColorIO • OpenVR • Out • Outside • Over • Pack • Photoshop In • PreFilter Map • Projection • Ramp • RealSense • Rectangle • Remap • Render Pass • Render Select • Render • Reorder • Resolution • RGB Key • RGB to HSV • Scalable Display • Screen Grab • Screen • Select • Shared Mem In • Shared Mem Out • Slope • SSAO • Substance Select • Substance • Subtract • SVG • Switch • Syphon Spout In • Syphon Spout Out • Text • Texture 3D • Texture iltering• Texture Sampling arameters• Threshold • Tile • Time Machine • TOP• TOP iewer• Touch In • Touch Out • Transform • Under • Video Device In • Video Device Out • Video Stream In • Video Stream Out • Vioso • Web Render • ZED

An Operator Family that creates, composites and modifies images, and reads/writes images and movies to/from files and the network. TOPs run on the graphics card's GPU.

An Operator Family that manipulates text strings: multi-line text or tables. Multi-line text is often a command Script, but can be any multi-line text. Tables are rows and columns of cells, each containing a text string.

The OpenGL code that creates a rendered image from polygons and textures. Shaders can be made of up to three parts: Vertex Shader, Geometry Shader and/or Pixel Shader, which are either embedded inside Materials, or placed in Text DATs and referenced to a GLSL Material.

An Operator Family which operate on Channels (a series of numbers) which are used for animation, audio, mathematics, simulation, logic, UI construction, and many other applications.

The width and height of an image in pixels. Most TOPs, like the Movie File In TOP can set the image resolution. See Aspect Ratio for the width/height ratio of an image, taking into account non-square pixels.

The viewer of a node can be (1) the interior of a node (the Node Viewer), (2) a floating window (RMB->View... on node), or (3) a Pane that graphically shows the results of an operator.

A CHOP outputs one or more channels, where a channel is simply a sequence of numbers, representing motion, audio, etc. Channels are passed between CHOPs in TouchDesigner networks. See also Export.