Camera COMP

From Derivative
Jump to: navigation, search


Summary

The Camera Component is a 3D object that acts like real-world cameras. You view your scene through it and render from their point of view. A Camera Component can be attached or linked to any other 3D Component in a 3D hierarchy.

PythonIcon.pngcameraCOMP_Class


Parameters - Xform Page

The Xform parameter page controls the object component's transform in world space.

Transform Order xord - - The menu attached to this parameter allows you to specify the order in which the changes to your Component will take place. Changing the Transform order will change where things go much the same way as going a block and turning east gets you to a different place than turning east and then going a block. In matrix math terms, if we use the 'multiply vector on the right' (column vector) convention, a transform order of Scale, Rotate, Translate would be written as translate * rotate * scale * vectorOrPosition.

  • Scale Rotate Translate srt -
  • Scale Translate Rotate str -
  • Rotate Scale Translate rst -
  • Rotate Translate Scale rts -
  • Translate Scale Rotate tsr -
  • Translate Rotate Scale trs -

Rotate Order rord - - The rotational matrix presented when you click on this option allows you to set the transform order for the Component's rotations. As with transform order (above), changing the order in which the Component's rotations take place will alter the Component's final position.

  • Rx Ry Rz xyz -
  • Rx Rz Ry xzy -
  • Ry Rx Rz yxz -
  • Ry Rz Rx yzx -
  • Rz Rx Ry zxy -
  • Rz Ry Rx zyx -

Translate t- - The three fields allow you to specify the amount of movement along any of the three axes; the amount, in degrees, of rotation around any of the three axes; and a non-uniform scaling along the three axes. As an alternative to entering the values directly into these fields, you can modify the values by manipulating the Component in the Viewport with the Select & Transform state.

X tx -


Y ty -


Z tz -

Rotate r- - The three fields allow you to specify the amount of movement along any of the three axes; the amount, in degrees, of rotation around any of the three axes; and a non-uniform scaling along the three axes. As an alternative to entering the values directly into these fields, you can modify the values by manipulating the Component in the Viewport with the Select & Transform state.

X rx -


Y ry -


Z rz -

Scale s- - The three fields allow you to specify the amount of movement along any of the three axes; the amount, in degrees, of rotation around any of the three axes; and a non-uniform scaling along the three axes. As an alternative to entering the values directly into these fields, you can modify the values by manipulating the Component in the Viewport with the Select & Transform state.

X sx -


Y sy -


Z sz -

Pivot p- - The Pivot point edit fields allow you to define the point about which a Component scales and rotates. Altering the pivot point of a Component produces different results depending on the transformation performed on the Component.

For example, during a scaling operation, if the pivot point of an Component is located at -1, -1, 0 and you wanted to scale the Component by 0.5 (reduce its size by 50%), the Component would scale toward the pivot point and appear to slide down and to the left.

Objects17.gif

In the example above, rotations performed on an Component with different pivot points produce very different results.

X px -


Y py -


Z pz -

Uniform Scale scale - This field allows you to change the size of an Component uniformly along the three axes.

Note: Scaling a camera's channels is not generally recommended. However, should you decide to do so, the rendered output will match the Viewport as closely as possible when scales are involved.

 

Constrain To constrain - Allows the location of the object to be constrained to any other object whose path is specified in this parameter.

Look At lookat - Allows you to orient your Component by naming the Component you would like it to Look At, or point to. Once you have designated this Component to look at, it will continue to face that Component, even if you move it. This is useful if, for instance, you want a camera to follow another Component's movements. The Look At parameter points the Component in question at the other Component's origin.

Tip: To designate a center of interest for the camera that doesn't appear in your scene, create a Null Component and disable its display flag. Then Parent the Camera to the newly created Null Component, and tell the camera to look at this Component using the Look At parameter. You can direct the attention of the camera by moving the Null Component with the Select state. If you want to see both the camera and the Null Component, enable the Null Component's display flag, and use the Select state in an additional Viewport by clicking one of the icons in the top-right corner of the TouchDesigner window.

Look At Up Vector lookup - When specifying a Look At, it is possible to specify an up vector for the lookat. Without using an up vector, it is possible to get poor animation when the lookat Component passes through the Y axis of the target Component.

  • Don't Use Up Vector - Use this option if the look at Component does not pass through the Y axis of the target Component.
  • Use Up Vector - This precisely defines the rotates on the Component doing the looking. The Up Vector specified should not be parallel to the look at direction. See Up Vector below.
  • Use Quaternions - Quaternions are a mathematical representation of a 3D rotation. This method finds the most efficient means of moving from one point to another on a sphere.

Path SOP pathsop - Names the SOP that functions as the path you want this Component to move along. For instance, you can name an SOP that provides a spline path for the camera to follow.

Production Tip: For Smooth Motion Along a Path - Having a Component follow an animation path is simple. However, when using a NURBS curve as your path, you might notice that the Component speeds up and slows down unexpectedly as it travels along the path. This is usually because the CVs are spaced unevenly. In such a case, use the Resample SOP to redistribute the CVs so that they are evenly spaced along the curve. A caution however - using a Resample SOP can be slow if you have an animating path curve.

An alternative method is to append a Basis SOP to the path curve and change it to a Uniform Curve. This way, your Component will move uniformly down the curve, and there is no need for the Resample SOP and the unnecessary points it generates.

Roll roll - Using the angle control you can specify a Component's rotation as it animates along the path.

Position pos - This parameter lets you specify the Position of the Component along the path. The values you can enter for this parameter range from 0 to 1, where 0 equals the starting point and 1 equals the end point of the path. The value slider allows for values as high as 10 for multiple "passes" along the path.  

Orient along Path pathorient - If this option is selected, the Component will be oriented along the path. The positive Z axis of the Component will be pointing down the path.

Orient Up Vector up- - When orienting a Component, the Up Vector is used to determine where the positive Y axis points.

X upx -


Y upy -


Z upz -

Auto-Bank Factor bank - The Auto-Bank Factor rolls the Component based on the curvature of the path at its current position. To turn off auto-banking, set the bank scale to 0.  



Parameters - Pre-Xform Page

The Pre-Xform parameter page applies a transform to the object component before the Xform page's parameters are applied. That is, it is the same as connecting a Null COMP as a parent of this node, and putting same transform parameters in there as you would in the Pre-Xform page. In terms of matrix math, if we use the 'multiply vector on the right' (column vector) convention, the equation would be preXForm * xform * vector.

Xform Matrix/CHOP/DAT xformmatrixop - This parameter can be used to transform using a 4x4 matrix directly. If a CHOP is used, the 16 elements of the matrix are taken from the first 16 channels of the CHOP. It only uses the first sample of each channel. The matrix data is laid out in such as way that the 13th, 14th and 15th channels contain the translation. This can be thought of as either column or row-major conventions, reading the channels column by column or row by row.

If a DAT is used it should be a 4x4 table with the desired matrix values in each cell. The translation should be in the last column, which means it is using the convention of multiplying vectors/points on the right of the matrix (like GLSL does). If you are converting from a Table DAT using a DAT to CHOP, you'll want to use a Transpose DAT to get the channels in the correct order. It applied to the Xform Matrix in the Pre-Xform page of all Object CHOPs and the Projection Matrix in the View page of Lights and Cameras.

A tdu.Matrix can also be directly specified. Example of using a tdu.Matrix:

m = tdu.Matrix()			
m.translate(5, 0, 0)			
m.rotate(0, 45, 0)			
someNode.store(‘xformMat’, m)			

and in the node parameter you would put:

me.fetch(‘xformMat’)

Apply Pre-Transform pxform -

Transform Order pxord - -

  • Scale Rotate Translate srt -
  • Scale Translate Rotate str -
  • Rotate Scale Translate rst -
  • Rotate Translate Scale rts -
  • Translate Scale Rotate tsr -
  • Translate Rotate Scale trs -

Rotate Order prord - -

  • Rx Ry Rz xyz -
  • Rx Rz Ry xzy -
  • Ry Rx Rz yxz -
  • Ry Rz Rx yzx -
  • Rz Rx Ry zxy -
  • Rz Ry Rx zyx -

Translate pt- -

X ptx -


Y pty -


Z ptz -

Rotate pr- -

X prx -


Y pry -


Z prz -

Scale ps- -

X psx -


Y psy -


Z psz -

Pivot pp- -

X ppx -


Y ppy -


Z ppz -

Uniform Scale pscale -  

Reset Transform preset -

Commit to Main Transform pcommit -

Xform Matrix/CHOP/DAT xformmatrixop -



Parameters - View Page

Projection projection - - A pop-up menu lets you choose from Perspective and Orthographic projection types. A third option Perpective to Ortho Blend enables the Projection Blend parameter below which can be used to blend between perspectives. A 4th option Custom Projection Matrix allows you to specify a custom 4x4 projection matrix using a CHOP or a DAT.

  • Perspective perspective -
  • Orthographic ortho -
  • Perspective to Ortho Blend persporthoblend -
  • Custom Projection Matrix custommatrix -

Projection Blend projectionblend - Blends between perspective projection and orthographic projection when the Projection parameter is set to Perspective to Ortho Blend.  

Ortho Width orthowidth - Only active if Orthographic is chosen from the Projection pop-up menu. This specifies the width of the orthographic projection.  

Viewing Angle Method viewanglemethod - - This menu determines which method is used to define the camera's angle of view.

  • Horizontal FOV horzfov - Uses the FOV Angle parameter below to set the camera's angle of view horizontally.
  • Vertical FOV vertfov - Uses the FOV Angle parameter below to set the camera's angle of view vertically.
  • Focal Length and Aperture focalaperture - Uses the Focal Length and Aperture parameters below to define the camera's angle of view.

FOV Angle fov - The field of view (FOV) angle is the angular extend of the scene imaged by the camera.

Field of View and Throw Angle: The FOV would be:

FOV = arctan( (screenWidth / 2) / (distanceToScreen) ) * 2
FOV = arctan( 0.5 * (screenWidth / distanceToScreen) ) * 2

Throw is:

Throw = distanceToScreen / screenWidth
1/Throw = screenWidth / distanceToScreen

In terms of throw, it’s

FOV = arctan(0.5 * (1/Throw)) * 2
FOV = arctan(0.5 / Throw) * 2

 

Focal Length focal - The parameter sets the focal length of the lens, zooming in and out. Perspective is flattened or exaggerated depending on focal length. See FOV Angle parameter for relation of aperture, focal length and field of view angle. Some interesting distortion effects can be acheived with this parameter.  

Aperture aperture - This value relates to the area through which light can pass for the camera.  

Window X/Y win- - These parameters define the center of the window during the rendering process. The window parameter takes the view and expands it to fit the camera's field of vision. It is important to note that this action is independent of perspective. In other words, it acts as though you are panning the camera without actually moving the camera. The units for this parameter are normalized. That is a Window X of -0.5 will move the previous center of the image to the left edge of the render.

X winx -


Y winy -

Window Size winsize - The Window Size parameter specifies the dimensions for expanding the view. Similar to Window X / Y, this parameter creates a zoom effect by scaling the screen before rendering to the viewport.  

Near near - This control allows you to designate the near clipping planes. Geometry closer from the lens than these distances will not be visible.

NOTE: If geometry in your scene is producing z-depth artifacts, increase the resolution of the camera's z-depth buffer. To do this, decrease the difference between near and far clipping planes, starting with the near plane.  

Far far - This control allows you to designate the far clipping planes. Geometry further away from the lens than these distances will not be visible.

NOTE: If geometry in your scene is producing z-depth artifacts, increase the resolution of the camera's z-depth buffer. To do this, decrease the difference between near and far clipping planes, starting with the near plane.  

Window Roll winroll - This parameter sets the amount, in degrees, the window area rolls. This can be set as a static value or as an aspect that changes over the course of the animation. The roll occurs about the centre of the window.  

IPD Shift ipdshift - This is the Interpupillary Distance which applies a translation on the X axis. It is separate from the other translations because when doing things such as a Cube Map rendering, the shift needs to occur after the rotation to the other cube face. If you apply the shift directly in the X translate parameter the cameras will be in the incorrect spot for many of the cube faces.

To use the IPD with 2 cameras, the right eye camera should be set with +IPD/2 and the left eye camera to -IPD/2.  

Proj Matrix/CHOP/DAT projmatrixop - When Custom Projection Matrix is selected, this parameters should be filled in with either a CHOP or a DAT with a custom 4x4 projection matrix. If a CHOP is used the first sample of the first 16 channels of the CHOP are used to create a 4x4 matrix. The channels can be thought as being read row-by-row or column-by-column. If a DAT is given a 4x4 table should be used. The matrix convention used is column major, which means vectors/points are multiplied on the right of the matrix.

Custom Projection GLSL DAT customproj - Takes a DAT containing a GLSL shader to specify custom projection functions. You must provide one functions in this shader. As a starting point, here are the definitions for the function that is used when custom ones are not provided. This will only be used when the Render TOP is rendering a 2D output, not cubemaps or fisheye renders.

 vec4 UserWorldToProj(vec4 worldSpaceVertPosition, int cameraIndex)			
 {			
     vec4 projP = uTDMats[cameraIndex].camProj * worldSpaceVertPosition;			
     return projP;			
 }			

vec3 TDWorldToProj() will automatically call this at the appropriate point. You can use uniforms/samplers in this shader code by declaring them here and providing them in the GLSL page of the Render TOP.



Parameters - Settings Page

Background Color bgcolor - Sets the background color and alpha of the camera's view.

  • Red bgcolorr -
  • Green bgcolorg -
  • Blue bgcolorb -
  • Alpha bgcolora -

Fog fog - - This menu determines the type of fog rendered in the viewport: Linear fog uses the following equation:

Objects14.gif

Exponential fog uses the following equation:

Objects18.gif

Squared Exponential fog uses the following equation:

Objects20.gif

  • Off off -
  • Linear linear -
  • Exponential exp -
  • Squared Exponential exp2 -

Fog Density fogdensity - A value that specifies density or thickness, used in both exponential fog types. Only non-negative densities are accepted.  

Fog Near fognear - The starting distance of the fog. If geometry is closer to the camera than this distance, fog will not be calculated in the color of the geometry. Used in the linear fog equation.  

Fog Far fogfar - The far distance used in the linear fog equation.  

Fog Color fogcolor - The color of the fog.

  • Red fogcolorr -
  • Green fogcolorg -
  • Blue fogcolorb -

Fog Alpha fogalpha - Used to control the background opacity of the scene.  

Fog Map fogmap - Use a TOP texture as a color map for the fog.

Texture Sampling Parameters

Camera Light Mask camlightmask - Allows only specific lights to be used by this camera. This is used in conjunction with the Lights parameter in the Render TOP to determine what lights are used to illuminate the geometry. When this parameter is left blank, all lights specified in the Render TOP will be used. Lights specified in this parameter will limit the geometry's lighting with this camera to the light(s)specified assuming the light(s) is also listed in the Render TOP.



Parameters - Render Page

The Display parameter page controls the component's material and rendering settings.

Material material - Selects a MAT to apply to the geometry inside.

Render render - Whether the Component's geometry is visible in the Render TOP. This parameter works in conjunction (logical AND) with the Component's Render Flag.

Draw Priority drawpriority - Determines the order in which the Components are drawn. Smaller values get drawn after (on top of) larger values.  

Pick Priority pickpriority -  

Wireframe Color wcolor - Use the R, G, and B fields to set the Component's color when displayed in wireframe shading mode.

  • Red wcolorr -
  • Green wcolorg -
  • Blue wcolorb -

Light Mask lightmask -



Parameters - Extensions Page

The Extensions parameter page sets the component's python extensions. Please see extensions for more information.

Extension Object 1 extension1 - A number of class instances that can be attached to the component.

Extension Name 1 extname1 - Optional name to search by, instead of the instance class name.

Promote Extension 1 promoteextension1 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction

Extension Object 2 extension2 - A number of class instances that can be attached to the component.

Extension Name 2 extname2 - Optional name to search by, instead of the instance class name.

Promote Extension 2 promoteextension2 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction

Extension Object 3 extension3 - A number of class instances that can be attached to the component.

Extension Name 3 extname3 - Optional name to search by, instead of the instance class name.

Promote Extension 3 promoteextension3 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction

Extension Object 4 extension4 - A number of class instances that can be attached to the component.

Extension Name 4 extname4 - Optional name to search by, instead of the instance class name.

Promote Extension 4 promoteextension4 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction

Re-Init Extensions reinitextensions - Recompile all extension objects. Normally extension objects are compiled only when they are referenced and their definitions have changed.



Parameters - Common Page

The Common parameter page sets the component's node viewer, clone relationships, Parent Shortcut, and Global OP Shortcut.

Parent Shortcut parentshortcut - Specifies a name you can use anywhere inside the component as the path to that component. See Parent Shortcut.

Global OP Shortcut opshortcut - Specifies a name you can use anywhere at all as the path to that component. See Global OP Shortcut.

Node View nodeview - - Determines what is displayed in the node viewer, also known as the Node Viewer. Some options will not be available depending on the Component type (Object Component, Panel Component, Misc.)

  • Default Viewer default - Displays the default viewer for the component type, a 3D Viewer for Object COMPS and a Control Panel Viewer for Panel COMPs.
  • Operator Viewer opviewer - Displays the node viewer from any operator specified in the Operator Viewer parameter below.

Operator Viewer opviewer - Select which operator's node viewer to use when the Node View parameter above is set to Operator Viewer.

Keep in Memory keepmemory -

Enable Cloning enablecloning - Control if the OP should be actively cloned. The Pulse button can be used to instantaneously clone the contents.

Enable Cloning Pulse enablecloningpulse -

Clone Master clone - Path to a component used as the Master Clone.

Load on Demand loadondemand - Loads the component into memory only when required. Good to use for components that are not always used in the project.

External .tox externaltox - Path to a .tox file on disk which will source the component's contents upon start of a .toe. This allows for components to contain networks that can be updated independently. If the .tox file can not be found, whatever the .toe file was saved with will be loaded.

Reload .tox on Start reloadtoxonstart - When on (default), the external .tox file will be loaded when the .toe starts and the contents of the COMP will match that of the external .tox. This can be turned off to avoid loading from the referenced external .tox on startup if desired (the contents of the COMP are instead loaded from the .toe file). Useful if you wish to have a COMP reference an external .tox but not always load from it unless you specifically push the Re-Init Network parameter button.

Save Backup of External savebackup - When this checkbox is enabled, a backup copy of the component specified by the External .tox parameter is saved in the .toe file. This backup copy will be used if the External .tox can not be found. This may happen if the .tox was renamed, deleted, or the .toe file is running on another computer that is missing component media.

Sub-Component to Load subcompname - When loading from an External .tox file, this option allows you to reach into the .tox and pull out a COMP and make that the top-level COMP, ignoring everything else in the file (except for the contents of that COMP). For example if a .tox file named project1.tox contains project1/geo1, putting geo1 as the Sub-Component to Load, will result in geo1 being loaded in place of the current COMP. If this parameter is blank, it just loads the .tox file normally using the top level COMP in the file.

Re-Init Network reinitnet - This button will re-load from the external .tox file (if present), followed by re-initializing itself from its master, if it's a clone.



COMPs
Ambient Light • Animation • Base • Blend • Bone • Button • Camera Blend • Camera • Component• Container • Environment Light • Field • Geometry • Handle • Light • List • Null • OP Viewer • Parameter • Replicator • Select • Shared Mem In • Shared Mem Out • Slider • Table • Time • Window

An Operator Family that contains its own Network inside. There are twelve 3D Object Component and eight 2D Panel Component types. See also Network Path.

The location of an operator within the TouchDesigner environment, for example, /geo1/torus1, a node called torus1 in a component called geo1. The path / is called Root. To refer instead to a filesystem folder, directory, disk file or http: address, see Folder.

An Operator Family that reads, creates and modifies 3D polygons, curves, NURBS surfaces, spheres, meatballs and other 3D surface data.

An Operator Family which operate on Channels (a series of numbers) which are used for animation, audio, mathematics, simulation, logic, UI construction, and many other applications.

An Operator Family that manipulates text strings: multi-line text or tables. Multi-line text is often a command Script, but can be any multi-line text. Tables are rows and columns of cells, each containing a text string.

A form of DATs (Data Operators) that is structured as rows and columns of text strings.

The component types that are used to render 3D scenes: Geometry Component contain the 3D shapes to render, plus Camera, Light, Ambient Light, Null, Bone, Handle and other component types.

Strictly refers to a window in Microsoft Windows. User-created windows are made with Panels inside Window Components, aside from the TouchDesigner editor window and its dialogs.

An Operator Family that creates, composites and modifies images, and reads/writes images and movies to/from files and the network. TOPs run on the graphics card's GPU.

An Operator Family that associates a shader with a SOP or Geometry Object for rendering textured and lit objects.

Any component can be extended with its own Python classes which contain python functions and data.

A Parent Shortcut is a parameter on a component that contains a name that you can use anywhere inside the component to refer to that component using the syntax parent.Name, for example parent.Effect.width to obtain panel width.

A name for a component that is accessible from any node in a project, which can be declared in a component's Global Operator Shortcut parameter.

The viewer of a node can be (1) the interior of a node (the Node Viewer), (2) a floating window (RMB->View... on node), or (3) a Pane that graphically shows the results of an operator.

A custom interactive control panel built within TouchDesigner. Panels are created using Panel Components whose look is created entirely with TOPs.

To pulse a parameter is to send it a signal from a CHOP or python or a mouse click that causes a new action to occur immediately. A pulse from a CHOP is typically a 0 to 1 to 0 signal in a channel, and a pulse via python is via a .pulse() call on a pulse-type parameter, such as Reset in a Speed CHOP.

Cloning can make multiple components match the contents of a master component. A Component whose Clone parameter is set will be forced to contain the same nodes, wiring and parameters as its master component. Cloning does not create new components as does the Replicator COMP.

TouchDesigner Component file, the file type used to save a Component from TouchDesigner.

TOuch Environment file, the file type used by TouchDesigner to save your project.

An Operator Family that contains its own Network inside. There are twelve 3D Object Component and eight 2D Panel Component types. See also Network Path.

Every component contains a network of operators that create and modify data. The operators are connected by wires that define where data is routed after the operator cooks its inputs and generates an output.