SICK TOP

From Derivative
Jump to navigation Jump to search

Summary
[edit]

NOTE

OS: This operator is only supported under the Windows operating system.

The SICK TOP can be used to retrieve point cloud data from a LIDAR sensor made by SICK. Sensor results are packed into a floating point texture where each pixel represents one point of data and each color channel stores one field such as x, y or z position. The TOP utilizes the 'sick_scan_xd' SDK and supported sensors are listed on the project's GitHub page.

The point cloud texture can be further manipulated using other TOPs such as the Point Transform TOP or Math TOP and then used to generate geometry instances using a Geometry COMP, and optionally rendered using a Line MAT.

Communication with the LIDAR sensor is done over an Ethernet connection and the Device Address parameter can be used to enter the sensor's IP address on your network. The SOPAS Engineering Tool software available from SICK can be used to auto-detect the IP address of connected sensors.

Sensor configuration is handled using an external launch file that can be downloaded from SICK. This file is required for any connection and must match the SDK version and model of your sensor. TouchDesigner currently uses version 3.0.x of the SDK. The version can also be viewed in the TOP's info box by middle-clicking on the node.

Important: The 'sick_scan_xd' SDK only supports one sensor per CPU process, so you may only have one active SICK TOP in a TouchDesigner project file. If multiple SICK TOPs are used, only the first node to cook will activate. To access multiple sensors in the same project, use the sickEngine component in the Point Cloud folder of the palette. It utilizes the Engine COMP to launch each SICK TOP in a separate process.

Tip: To obtain additional debugging and status information you can use the 'TOUCH_TEXT_CONSOLE=1' environment variable to see output from the SICK SDK in the console window. Note: this only works for SICK TOPs in the primary TouchDesigner project, there is no output for TOPs inside Engine COMPs.

PythonIcon.pngsickTOP_Class


Parameters - Connection Page

Active active - Activate the connection to the sensor. Only one SICK node can be active in a project at time. If a second node is activated it will cause an error message.

Reinitialize reinitialize - Restart the connection with the sensor. This will shutdown the connection and reinitialize using the current parameters. You can also toggle the Active parameter off and on again to reinitialize the sensor.

Launch File launchfile - A path to the launch file to configure the sensor. A valid launch file is necessary to connect to the sensor. Sample launch files for each sensor can be downloaded from SICK's website. Advanced configuration options can be set in the launch file.

Device Address deviceaddress - The IP address for the sensor. If this parameter is blank, the default address in the launch file will be used.

Port port - The port number for the sensor. If this parameter is blank, the default port number in the launch file will be used.

Custom Arguments customargs - Additional arguments that should be included when initializing the sensor. This can be used to customize parameters for individual sensors while still using the same launch file. Arguments should be in the format "name1:=value1 name2:=value2".

Red red - The name of the data field that will be assigned to the red component of the output image e.g. 'x'. The available fields will vary depending on the sensor and can be selected from the flyout menu to the right of the parameter.

Green green - The name of the data field that will be assigned to the green component of the output image e.g. 'g'. The available fields will vary depending on the sensor and can be selected from the flyout menu to the right of the parameter. 'one' or 'zero' can be used to assign a constant value.

Blue blue - The name of the data field that will be assigned to the blue component of the output image e.g. 'z'. The available fields will vary depending on the sensor and can be selected from the flyout menu to the right of the parameter. 'one' or 'zero' can be used to assign a constant value.

Alpha alpha - The name of the data field that will be assigned to the alpha component of the output image e.g. 'one'. The available fields will vary depending on the sensor and can be selected from the flyout menu to the right of the parameter. 'one' or 'zero' can be used to assign a constant value.


Parameters - Common Page

Output Resolution outputresolution - - quickly change the resolution of the TOP's data.
  • Use Input useinput - Uses the input's resolution.
  • Eighth eighth - Multiply the input's resolution by that amount.
  • Quarter quarter - Multiply the input's resolution by that amount.
  • Half half - Multiply the input's resolution by that amount.
  • 2X 2x - Multiply the input's resolution by that amount.
  • 4X 4x - Multiply the input's resolution by that amount.
  • 8X 8x - Multiply the input's resolution by that amount.
  • Fit Resolution fit - Grow or shrink the input resolution to fit this resolution, while keeping the aspect ratio the same.
  • Limit Resolution limit - Limit the input resolution to be not larger than this resolution, while keeping the aspect ratio the same.
  • Custom Resolution custom - Directly control the width and height.
Resolution resolution - - Enabled only when the Resolution parameter is set to Custom Resolution. Some Generators like Constant and Ramp do not use inputs and only use this field to determine their size. The drop down menu on the right provides some commonly used resolutions.
  • W resolutionw -
  • H resolutionh -
Resolution Menu resmenu - A drop-down menu with some commonly used resolutions.

Use Global Res Multiplier resmult - Uses the Global Resolution Multiplier found in Edit>Preferences>TOPs. This multiplies all the TOPs resolutions by the set amount. This is handy when working on computers with different hardware specifications. If a project is designed on a desktop workstation with lots of graphics memory, a user on a laptop with only 64MB VRAM can set the Global Resolution Multiplier to a value of half or quarter so it runs at an acceptable speed. By checking this checkbox on, this TOP is affected by the global multiplier.

Output Aspect outputaspect - - Sets the image aspect ratio allowing any textures to be viewed in any size. Watch for unexpected results when compositing TOPs with different aspect ratios. (You can define images with non-square pixels using xres, yres, aspectx, aspecty where xres/yres != aspectx/aspecty.)
  • Use Input useinput - Uses the input's aspect ratio.
  • Resolution resolution - Uses the aspect of the image's defined resolution (ie 512x256 would be 2:1), whereby each pixel is square.
  • Custom Aspect custom - Lets you explicitly define a custom aspect ratio in the Aspect parameter below.
Aspect aspect - - Use when Output Aspect parameter is set to Custom Aspect.
  • Aspect1 aspect1 -
  • Aspect2 aspect2 -
Aspect Menu armenu - A drop-down menu with some commonly used aspect ratios.

Input Smoothness inputfiltertype - - This controls pixel filtering on the input image of the TOP.
  • Nearest Pixel nearest - Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
  • Interpolate Pixels linear - Uses linear filtering between pixels. This is how you get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
  • Mipmap Pixels mipmap - Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.
Fill Viewer fillmode - - Determine how the TOP image is displayed in the viewer.

NOTE:To get an understanding of how TOPs work with images, you will want to set this to Native Resolution as you lay down TOPs when starting out. This will let you see what is actually happening without any automatic viewer resizing.

  • Use Input useinput - Uses the same Fill Viewer settings as it's input.
  • Fill fill - Stretches the image to fit the edges of the viewer.
  • Fit Horizontal width - Stretches image to fit viewer horizontally.
  • Fit Vertical height - Stretches image to fit viewer vertically.
  • Fit Best best - Stretches or squashes image so no part of image is cropped.
  • Fit Outside outside - Stretches or squashes image so image fills viewer while constraining it's proportions. This often leads to part of image getting cropped by viewer.
  • Native Resolution nativeres - Displays the native resolution of the image in the viewer.
Viewer Smoothness filtertype - - This controls pixel filtering in the viewers.
  • Nearest Pixel nearest - Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
  • Interpolate Pixels linear - Uses linear filtering between pixels. Use this to get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
  • Mipmap Pixels mipmap - Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail. When the input is 32-bit float format, only nearest filtering will be used (regardless of what is selected).
Passes npasses - Duplicates the operation of the TOP the specified number of times. For every pass after the first it takes the result of the previous pass and replaces the node's first input with the result of the previous pass. One exception to this is the GLSL TOP when using compute shaders, where the input will continue to be the connected TOP's image.

Channel Mask chanmask - Allows you to choose which channels (R, G, B, or A) the TOP will operate on. All channels are selected by default.

Pixel Format format - - Format used to store data for each channel in the image (ie. R, G, B, and A). Refer to Pixel Formats for more information.
  • Use Input useinput - Uses the input's pixel format.
  • 8-bit fixed (RGBA) rgba8fixed - Uses 8-bit integer values for each channel.
  • sRGB 8-bit fixed (RGBA) srgba8fixed - Uses 8-bit integer values for each channel and stores color in sRGB colorspace. Note that this does not apply an sRGB curve to the pixel values, it only stores them using an sRGB curve. This means more data is used for the darker values and less for the brighter values. When the values are read downstream they will be converted back to linear. For more information refer to sRGB.
  • 16-bit float (RGBA) rgba16float - Uses 16-bits per color channel, 64-bits per pixel.
  • 32-bit float (RGBA) rgba32float - Uses 32-bits per color channel, 128-bits per pixels.
  • 10-bit RGB, 2-bit Alpha, fixed (RGBA) rgb10a2fixed - Uses 10-bits per color channel and 2-bits for alpha, 32-bits total per pixel.
  • 16-bit fixed (RGBA) rgba16fixed - Uses 16-bits per color channel, 64-bits total per pixel.
  • 11-bit float (RGB), Positive Values Only rgba11float - A RGB floating point format that has 11 bits for the Red and Green channels, and 10-bits for the Blue Channel, 32-bits total per pixel (therefore the same memory usage as 8-bit RGBA). The Alpha channel in this format will always be 1. Values can go above one, but can't be negative. ie. the range is [0, infinite).
  • 16-bit float (RGB) rgb16float -
  • 32-bit float (RGB) rgb32float -
  • 8-bit fixed (Mono) mono8fixed - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 8-bits per pixel.
  • 16-bit fixed (Mono) mono16fixed - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
  • 16-bit float (Mono) mono16float - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
  • 32-bit float (Mono) mono32float - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 32-bits per pixel.
  • 8-bit fixed (RG) rg8fixed - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 8-bits per channel, 16-bits total per pixel.
  • 16-bit fixed (RG) rg16fixed - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
  • 16-bit float (RG) rg16float - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
  • 32-bit float (RG) rg32float - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 32-bits per channel, 64-bits total per pixel.
  • 8-bit fixed (A) a8fixed - An Alpha only format that has 8-bits per channel, 8-bits per pixel.
  • 16-bit fixed (A) a16fixed - An Alpha only format that has 16-bits per channel, 16-bits per pixel.
  • 16-bit float (A) a16float - An Alpha only format that has 16-bits per channel, 16-bits per pixel.
  • 32-bit float (A) a32float - An Alpha only format that has 32-bits per channel, 32-bits per pixel.
  • 8-bit fixed (Mono+Alpha) monoalpha8fixed - A 2 channel format, one value for RGB and one value for Alpha. 8-bits per channel, 16-bits per pixel.
  • 16-bit fixed (Mono+Alpha) monoalpha16fixed - A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
  • 16-bit float (Mono+Alpha) monoalpha16float - A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
  • 32-bit float (Mono+Alpha) monoalpha32float - A 2 channel format, one value for RGB and one value for Alpha. 32-bits per channel, 64-bits per pixel.


Info CHOP Channels

Extra Information for the can be accessed via an Info CHOP. Info Channels Common Page

Common Operator Info Channels

  • total_cooks - Number of times the operator has cooked since the process started.
  • cook_time - Duration of the last cook in milliseconds.
  • cook_frame - Frame number when this operator was last cooked relative to the component timeline.
  • cook_abs_frame - Frame number when this operator was last cooked relative to the absolute time.
  • cook_start_time - Time in milliseconds at which the operator started cooking in the frame it was cooked.
  • cook_end_time - Time in milliseconds at which the operator finished cooking in the frame it was cooked.
  • cooked_this_frame - 1 if operator was cooked this frame.
  • warnings - Number of warnings in this operator if any.
  • errors - Number of errors in this operator if any.


TouchDesigner Build:

TOPs
Add • Analyze • Anti Alias • Blob Track • Bloom • Blur • Cache Select • Cache • Channel Mix • CHOP to • Chroma Key • Circle • Composite • Constant • Convolve • Corner Pin • CPlusPlus • Crop • Cross • Cube Map • Depth • Difference • Direct Display Out • DirectX In • DirectX Out • Displace • Edge • Emboss • Feedback • Fit • Flip • Function • GLSL Multi • GLSL • HSV Adjust • HSV to RGB • Import Select • In • Inside • Introduction To s Vid • Kinect Azure Select • Kinect Azure • Kinect • Layout • Leap Motion • Lens Distort • Level • Limit • Lookup • Luma Blur • Luma Level • Math • Matte • Mirror • Monochrome • MoSys • Movie File In • Movie File Out • MPCDI • Multiply • Ncam • NDI In • NDI Out • Noise • Normal Map • Notch • Null • Nvidia Background • Nvidia Denoise • Nvidia Flex • Nvidia Flow • Nvidia Upscaler • OAK Select • Oculus Rift • OP Viewer • OpenColorIO • OpenVR • Optical Flow • Orbbec Select • Orbbec • Ouster Select • Ouster • Out • Outside • Over • Pack • Photoshop In • Point File In • Point File Select • Point Transform • PreFilter Map • Projection • Ramp • RealSense • Rectangle • Remap • Render Pass • Render Select • Render • RenderStream In • RenderStream Out • Reorder • Resolution • RGB Key • RGB to HSV • Scalable Display • Screen Grab • Screen • Script • Select • Shared Mem In • Shared Mem Out • SICK • Slope • Spectrum • SSAO • Stype • Substance Select • Substance • Subtract • SVG • Switch • Syphon Spout In • Syphon Spout Out • Text • Texture 3D • Texture Sampling Parameters • Threshold • Tile • Time Machine • TOP • Experimental:TOP • TOP Viewer • Touch In • Touch Out • Transform • Under • Video Device In • Video Device Out • Video Stream In • Video Stream Out • Vioso • Web Render • ZED