Bone COMP

From Derivative
Jump to: navigation, search

Summary
[edit]

The Bone Component is the foundation of all of the Character Tools. It is a Component with most of the properties of a Geometry Component. It also has some extra features such as length, two types of geometry, end-to-end linking, and kinematic parameters.

The Bone Component is used to create hierarchies of limb-like objects that form part of a hierarchy or chain of Bone Components that are parented to one another. The movement of the chain of Bone Components is "solved" or computed based on several methods including Inverse Kinematics. The parenting attribute of bones is unique in that each bone attaches to the end, not the origin, of the parent bone.

It is recommended that you use the Bone Creation state, accessed through the state icons above the Viewport, to construct such a chain because placing individual Bone Components and establishing their parenting relationships from operator to operator is extremely time consuming and not at all intuitive. In addition, a chain created using the Bone state will produce a better behaved bone chain.

By default, bones do not render. They contain two types of display geometry: "link geometry" and "capture region geometry". The former consists of a narrow diamond shape which has been stretched to the length specified in Bone Length, and placed along the Bone Component's negative Z-axis. The latter consists of two or more user-controllable ellipses that are used to define capture regions used in skeleton sops. You can specify whether either of the two types of geometry are displayed.

The actual movement of the Bone Components is controlled through an IK CHOP (when using the standard Capture/Deform model). This is effected through an expression in the Transform channels of the Bone Component. If you want to override this behaviour, then you need to delete the bone's translate channels such that they are no longer over-ridden by chop control.

If you make a bone the child of a non-bone Component, then it will attach to the origin of that Component. If you want to reposition the bone relative to its non-bone parent, you must remove the expression in the bone's translate parameters.

PythonIcon.pngboneCOMP_Class


Parameters - Xform Page

The Xform parameter page controls the object component's transform in world space.

Transform Order xord - - The menu attached to this parameter allows you to specify the order in which the changes to your Component will take place. Changing the Transform order will change where things go much the same way as going a block and turning east gets you to a different place than turning east and then going a block. In matrix math terms, if we use the 'multiply vector on the right' (column vector) convention, a transform order of Scale, Rotate, Translate would be written as translate * rotate * scale * vectorOrPosition.

  • Scale Rotate Translate srt -
  • Scale Translate Rotate str -
  • Rotate Scale Translate rst -
  • Rotate Translate Scale rts -
  • Translate Scale Rotate tsr -
  • Translate Rotate Scale trs -

Rotate Order rord - - The rotational matrix presented when you click on this option allows you to set the transform order for the Component's rotations. As with transform order (above), changing the order in which the Component's rotations take place will alter the Component's final position.

  • Rx Ry Rz xyz -
  • Rx Rz Ry xzy -
  • Ry Rx Rz yxz -
  • Ry Rz Rx yzx -
  • Rz Rx Ry zxy -
  • Rz Ry Rx zyx -

Translate t - - The three fields allow you to specify the amount of movement along any of the three axes; the amount, in degrees, of rotation around any of the three axes; and a non-uniform scaling along the three axes. As an alternative to entering the values directly into these fields, you can modify the values by manipulating the Component in the Viewport with the Select & Transform state.

  • X tx -
  • Y ty -
  • Z tz -

Rotate r - - The three fields allow you to specify the amount of movement along any of the three axes; the amount, in degrees, of rotation around any of the three axes; and a non-uniform scaling along the three axes. As an alternative to entering the values directly into these fields, you can modify the values by manipulating the Component in the Viewport with the Select & Transform state.

  • X rx -
  • Y ry -
  • Z rz -

Scale s - - The three fields allow you to specify the amount of movement along any of the three axes; the amount, in degrees, of rotation around any of the three axes; and a non-uniform scaling along the three axes. As an alternative to entering the values directly into these fields, you can modify the values by manipulating the Component in the Viewport with the Select & Transform state.

  • X sx -
  • Y sy -
  • Z sz -

Pivot p - - The Pivot point edit fields allow you to define the point about which a Component scales and rotates. Altering the pivot point of a Component produces different results depending on the transformation performed on the Component.

For example, during a scaling operation, if the pivot point of an Component is located at -1, -1, 0 and you wanted to scale the Component by 0.5 (reduce its size by 50%), the Component would scale toward the pivot point and appear to slide down and to the left.

Objects17.gif

In the example above, rotations performed on an Component with different pivot points produce very different results.

  • X px -
  • Y py -
  • Z pz -

Uniform Scale scale - This field allows you to change the size of an Component uniformly along the three axes.

Note: Scaling a camera's channels is not generally recommended. However, should you decide to do so, the rendered output will match the Viewport as closely as possible when scales are involved.

 

Constrain To constrain - Allows the location of the object to be constrained to any other object whose path is specified in this parameter.  

Look At lookat - Allows you to orient your Component by naming the Component you would like it to Look At, or point to. Once you have designated this Component to look at, it will continue to face that Component, even if you move it. This is useful if, for instance, you want a camera to follow another Component's movements. The Look At parameter points the Component in question at the other Component's origin.

Tip: To designate a center of interest for the camera that doesn't appear in your scene, create a Null Component and disable its display flag. Then Parent the Camera to the newly created Null Component, and tell the camera to look at this Component using the Look At parameter. You can direct the attention of the camera by moving the Null Component with the Select state. If you want to see both the camera and the Null Component, enable the Null Component's display flag, and use the Select state in an additional Viewport by clicking one of the icons in the top-right corner of the TouchDesigner window.

 

Look At Up Vector lookup - When specifying a Look At, it is possible to specify an up vector for the lookat. Without using an up vector, it is possible to get poor animation when the lookat Component passes through the Y axis of the target Component.

  • Don't Use Up Vector - Use this option if the look at Component does not pass through the Y axis of the target Component.
  • Use Up Vector - This precisely defines the rotates on the Component doing the looking. The Up Vector specified should not be parallel to the look at direction. See Up Vector below.
  • Use Quaternions - Quaternions are a mathematical representation of a 3D rotation. This method finds the most efficient means of moving from one point to another on a sphere.

 

Path SOP pathsop - Names the SOP that functions as the path you want this Component to move along. For instance, you can name an SOP that provides a spline path for the camera to follow.

Production Tip: For Smooth Motion Along a Path - Having a Component follow an animation path is simple. However, when using a NURBS curve as your path, you might notice that the Component speeds up and slows down unexpectedly as it travels along the path. This is usually because the CVs are spaced unevenly. In such a case, use the Resample SOP to redistribute the CVs so that they are evenly spaced along the curve. A caution however - using a Resample SOP can be slow if you have an animating path curve.

An alternative method is to append a Basis SOP to the path curve and change it to a Uniform Curve. This way, your Component will move uniformly down the curve, and there is no need for the Resample SOP and the unnecessary points it generates.  

Roll roll - Using the angle control you can specify a Component's rotation as it animates along the path.  

Position pos - This parameter lets you specify the Position of the Component along the path. The values you can enter for this parameter range from 0 to 1, where 0 equals the starting point and 1 equals the end point of the path. The value slider allows for values as high as 10 for multiple "passes" along the path.  

Orient along Path pathorient - If this option is selected, the Component will be oriented along the path. The positive Z axis of the Component will be pointing down the path.  

Orient Up Vector up - - When orienting a Component, the Up Vector is used to determine where the positive Y axis points.

  • X upx -
  • Y upy -
  • Z upz -

Auto-Bank Factor bank - The Auto-Bank Factor rolls the Component based on the curvature of the path at its current position. To turn off auto-banking, set the bank scale to 0.  


Parameters - Pre-Xform Page

The Pre-Xform parameter page applies a transform to the object component before the Xform page's parameters are applied. That is, it is the same as connecting a Null COMP as a parent of this node, and putting same transform parameters in there as you would in the Pre-Xform page. In terms of matrix math, if we use the 'multiply vector on the right' (column vector) convention, the equation would be preXForm * xform * vector.

Apply Pre-Transform pxform -  

Transform Order pxord - -

  • Scale Rotate Translate srt -
  • Scale Translate Rotate str -
  • Rotate Scale Translate rst -
  • Rotate Translate Scale rts -
  • Translate Scale Rotate tsr -
  • Translate Rotate Scale trs -

Rotate Order prord - -

  • Rx Ry Rz xyz -
  • Rx Rz Ry xzy -
  • Ry Rx Rz yxz -
  • Ry Rz Rx yzx -
  • Rz Rx Ry zxy -
  • Rz Ry Rx zyx -

Translate pt - -

  • X ptx -
  • Y pty -
  • Z ptz -

Rotate pr - -

  • X prx -
  • Y pry -
  • Z prz -

Scale ps - -

  • X psx -
  • Y psy -
  • Z psz -

Pivot pp - -

  • X ppx -
  • Y ppy -
  • Z ppz -

Uniform Scale pscale -  

Reset Transform preset - This button will reset this page's transform so it has no translate/rotate/scale.  

Commit to Main Transform pcommit - This button will copy the transform from this page to the main Xform page, and reset this page's transform.  

Xform Matrix/CHOP/DAT xformmatrixop - This parameter can be used to transform using a 4x4 matrix directly. For information on ways to specify a matrix directly, refer to the Matrix Parameters page.  


Parameters - Bone Page

Display Link displaylink - Enabling this option allows you to toggle the display of the link geometry in the Viewport on and off.  

Rest Angles restangles - - Defines the relative weighting of rotations about Rx, Ry, Rz, the bone's x,y,z axis for the Inverse Kinematics solver.

  • X restanglesx -
  • Y restanglesy -
  • Z restanglesz -

Bone Length length - This parameter changes the overall length of the Bone Component. It affects the size of the bone geometry and the positioning of the capture geometry and also determines the "end" of the bone -- i.e. where Bone Components that are children of this bone will be positioned. By default, its end is oriented so that it lays along the local negative Z axis.  

Dampening ikdamp - This parameter prevents bone chains from locking in a dramatically straight line when they are fully extended. This type of locking motion tends to make characters look robotic. The dampening field is a number between zero and one. The larger the number, the greater the dampening effect. Dampening is applied to the entire bone chain as the chain approaches its full extension. The end affector is thus allowed to drift off the end of the bone chain. The net effect is that when the chain is nearly fully extended, a relatively large end affector motion will cause a relatively small motion in the end of the chain. This gives the animator finer granularity in controlling the bone chain when it is fully extended.  

X Angle Range xrange - - Specifies the maximum and minimum rotation angles.

  • beginxrange -
  • endxrange -

X Damping Angle xdamp - Applies damping to the rotation of the bone when the rotation in each axis falls within the angle specified by X / Y Angle Range.  

X Damping Rolloff xrolloff - Specifes the rate at which the damping increases as the rotation varies through the angle specifed by X / Y Angle Range.  

Y Angle Range yrange - - Specifies the maximum and minimum rotation angles.

  • beginyrange -
  • endyrange -

Y Damping Angle ydamp - Applies damping to the rotation of the bone when the rotation in each axis falls within the angle specified by X / Y Angle Range.  

Y Damping Rolloff yrolloff - Specifes the rate at which the damping increases as the rotation varies through the angle specifed by X / Y Angle Range.  


Parameters - Capture Page

The Capture page is used to automatically create a capture region used by either the Capture or Deform sops (see Capture SOP and Deform SOP of the SOPs section). The capture region consists of at least two ellipses, and they may be translated along the bone's length.

Region Centre / Top Bottom Cap Heights

Objects13.gif

All the geometry that is generated by the Bone Component is created using regular SOPs. Therefore, it is customisable by simply changing the Bone Component's SOP network. The bone's display can be easily altered by changing its contained SOPs.

Display Capture Geometry displaycapture -  

Region Center crcenter - - Position of the center of the region.

  • X crcenterx -
  • Y crcentery -
  • Z crcenterz -

Top Height crtopheight - Height of the region from the centre to the top cap.  

Top Cap crtopcap - - The X, Y, Z radii of the top/bottom hemisphere.

  • X crtopcapx -
  • Y crtopcapy -
  • Z crtopcapz -

Bot Height crbotheight - Height of the region from the centre to the top cap.  

Bot Cap crbotcap - - The X, Y, Z radii of the top/bottom hemisphere.

  • X crbotcapx -
  • Y crbotcapy -
  • Z crbotcapz -


Parameters - Render Page

The Display parameter page controls the component's material and rendering settings.

Material material - Selects a MAT to apply to the geometry inside.  

Render render - Whether the Component's geometry is visible in the Render TOP. This parameter works in conjunction (logical AND) with the Component's Render Flag.  

Draw Priority drawpriority - Determines the order in which the Components are drawn. Smaller values get drawn after (on top of) larger values.  

Pick Priority pickpriority - When using a Render Pick CHOP or a Render Pick DAT, there is an option to have a 'Search Area'. If multiple objects are found within the search area, the pick priority can be used to select one object over another. A higher value will get picked over a lower value. This does not affect draw order, or objects that are drawn over each other on the same pixel. Only one will be visible for a pick per pixel.  

Wireframe Color wcolor - - Use the R, G, and B fields to set the Component's color when displayed in wireframe shading mode.

  • Red wcolorr -
  • Green wcolorg -
  • Blue wcolorb -

Light Mask lightmask - By default all lights used in the Render TOP will affect geometry renderer. This parmaeter can be used to specify a sub-set of lights to be used for this particular geometry. The lights must be listed in the Render TOP as well as this parameter to be used.  


Parameters - Extensions Page

The Extensions parameter page sets the component's python extensions. Please see extensions for more information.

Extension Object 1 extension1 - A number of class instances that can be attached to the component.  

Extension Name 1 extname1 - Optional name to search by, instead of the instance class name.  

Promote Extension 1 promoteextension1 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction  

Extension Object 2 extension2 - A number of class instances that can be attached to the component.  

Extension Name 2 extname2 - Optional name to search by, instead of the instance class name.  

Promote Extension 2 promoteextension2 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction  

Extension Object 3 extension3 - A number of class instances that can be attached to the component.  

Extension Name 3 extname3 - Optional name to search by, instead of the instance class name.  

Promote Extension 3 promoteextension3 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction  

Extension Object 4 extension4 - A number of class instances that can be attached to the component.  

Extension Name 4 extname4 - Optional name to search by, instead of the instance class name.  

Promote Extension 4 promoteextension4 - Controls whether or not the extensions are visible directly at the component level, or must be accessed through the .ext member. Example: n.Somefunction vs n.ext.Somefunction  

Re-Init Extensions reinitextensions - Recompile all extension objects. Normally extension objects are compiled only when they are referenced and their definitions have changed.  


Parameters - Common Page

The Common parameter page sets the component's node viewer, clone relationships, Parent Shortcut, and Global OP Shortcut.

Parent Shortcut parentshortcut - Specifies a name you can use anywhere inside the component as the path to that component. See Parent Shortcut.  

Global OP Shortcut opshortcut - Specifies a name you can use anywhere at all as the path to that component. See Global OP Shortcut.  

Node View nodeview - - Determines what is displayed in the node viewer, also known as the Node Viewer. Some options will not be available depending on the Component type (Object Component, Panel Component, Misc.)

  • Default Viewer default - Displays the default viewer for the component type, a 3D Viewer for Object COMPS and a Control Panel Viewer for Panel COMPs.
  • Operator Viewer opviewer - Displays the node viewer from any operator specified in the Operator Viewer parameter below.

Operator Viewer opviewer - Select which operator's node viewer to use when the Node View parameter above is set to Operator Viewer.  

Keep in Memory keepmemory -  

Enable Cloning enablecloning - Control if the OP should be actively cloned. The Pulse button can be used to instantaneously clone the contents.  

Enable Cloning Pulse enablecloningpulse -  

Clone Master clone - Path to a component used as the Master Clone.  

Load on Demand loadondemand - Loads the component into memory only when required. Good to use for components that are not always used in the project.  

External .tox externaltox - Path to a .tox file on disk which will source the component's contents upon start of a .toe. This allows for components to contain networks that can be updated independently. If the .tox file can not be found, whatever the .toe file was saved with will be loaded.  

Reload .tox on Start reloadtoxonstart - When on (default), the external .tox file will be loaded when the .toe starts and the contents of the COMP will match that of the external .tox. This can be turned off to avoid loading from the referenced external .tox on startup if desired (the contents of the COMP are instead loaded from the .toe file). Useful if you wish to have a COMP reference an external .tox but not always load from it unless you specifically push the Re-Init Network parameter button.  

Save Backup of External savebackup - When this checkbox is enabled, a backup copy of the component specified by the External .tox parameter is saved in the .toe file. This backup copy will be used if the External .tox can not be found. This may happen if the .tox was renamed, deleted, or the .toe file is running on another computer that is missing component media.  

Sub-Component to Load subcompname - When loading from an External .tox file, this option allows you to reach into the .tox and pull out a COMP and make that the top-level COMP, ignoring everything else in the file (except for the contents of that COMP). For example if a .tox file named project1.tox contains project1/geo1, putting geo1 as the Sub-Component to Load, will result in geo1 being loaded in place of the current COMP. If this parameter is blank, it just loads the .tox file normally using the top level COMP in the file.  

Re-Init Network reinitnet - This button will re-load from the external .tox file (if present), followed by re-initializing itself from its master, if it's a clone.  


COMPs
Experimental:Actor • Ambient Light • Animation • Base • Blend • Bone • Experimental:Bullet Solver • Button • Camera Blend • Camera • Component • Experimental:Constraint • Container • Environment Light • Experimental:FBX • Field • Experimental:Force • Geometry • Handle • Experimental:Impulse Force • Light • List • Null • Experimental:Nvidia Flow Emitter • OP Viewer • Parameter • Experimental:Process • Replicator • Select • Shared Mem In • Shared Mem Out • Slider • Table • Time • Experimental:USD • Experimental:Widget • Window

An Operator Family that contains its own Network inside. There are twelve 3D Object Component and eight 2D Panel Component types. See also Network Path.

An Operator Family which operate on Channels (a series of numbers) which are used for animation, audio, mathematics, simulation, logic, UI construction, and many other applications.

The location of an operator within the TouchDesigner environment, for example, /geo1/torus1, a node called torus1 in a component called geo1. The path / is called Root. To refer instead to a filesystem folder, directory, disk file or http: address, see Folder.

An Operator Family that reads, creates and modifies 3D polygons, curves, NURBS surfaces, spheres, meatballs and other 3D surface data.

An Operator Family that manipulates text strings: multi-line text or tables. Multi-line text is often a command Script, but can be any multi-line text. Tables are rows and columns of cells, each containing a text string.

Unlike a Wire that connects nodes in the same Operator Family, a Link is the dashed lines between nodes that represent other data flowing between nodes, like CHOP Exports, node paths in parameters, and expressions in parameters referencing CHOP channels, DAT tables and other nodes.

The 3D data held in SOPs and passed for rendering by the Geometry COMP.

An Operator Family that associates a shader with a SOP or Geometry Object for rendering textured and lit objects.

Any component can be extended with its own Python classes which contain python functions and data.

The component types that are used to render 3D scenes: Geometry Component contain the 3D shapes to render, plus Camera, Light, Ambient Light, Null, Bone, Handle and other component types.

A Parent Shortcut is a parameter on a component that contains a name that you can use anywhere inside the component to refer to that component using the syntax parent.Name, for example parent.Effect.width to obtain panel width.

A name for a component that is accessible from any node in a project, which can be declared in a component's Global Operator Shortcut parameter.

The viewer of a node can be (1) the interior of a node (the Node Viewer), (2) a floating window (RMB->View... on node), or (3) a Pane that graphically shows the results of an operator.

A custom interactive control panel built within TouchDesigner. Panels are created using Panel Components whose look is created entirely with TOPs.

To pulse a parameter is to send it a signal from a CHOP or python or a mouse click that causes a new action to occur immediately. A pulse from a CHOP is typically a 0 to 1 to 0 signal in a channel, and a pulse via python is via a .pulse() call on a pulse-type parameter, such as Reset in a Speed CHOP.

Cloning can make multiple components match the contents of a master component. A Component whose Clone parameter is set will be forced to contain the same nodes, wiring and parameters as its master component. Cloning does not create new components as does the Replicator COMP.

TouchDesigner Component file, the file type used to save a Component from TouchDesigner.

TOuch Environment file, the file type used by TouchDesigner to save your project.

An Operator Family that contains its own Network inside. There are twelve 3D Object Component and eight 2D Panel Component types. See also Network Path.

Every component contains a network of operators that create and modify data. The operators are connected by wires that define where data is routed after the operator cooks its inputs and generates an output.